經(jīng)典案例
SuoFu Machinery攪拌技術(shù)--在制藥發(fā)酵工藝中的經(jīng)典應(yīng)用
發(fā)酵攪拌技術(shù)
攪拌器的主要作用
混合:將混溶的液體混合均勻,在整個(gè)發(fā)酵罐內(nèi)形成均一的濃度分布。
傳熱:將發(fā)酵過程中產(chǎn)生的大量的熱量移出發(fā)酵罐 (冷卻盤管或者罐外螺旋板冷卻夾套等)
氣體分散:無菌空氣通過氣體噴射環(huán)或分布管引入發(fā)酵罐內(nèi)。攪拌槳必須能夠有效地將氣體分散到液體中去,以促進(jìn)微生物生長,生成最終產(chǎn)品。
槳型設(shè)計(jì) :
必須兼顧剪切(有助于氣體分散到液體中去)和宏觀混合流動(dòng)兩方面。
槳型設(shè)計(jì)還應(yīng)充分考慮產(chǎn)品的特性,根據(jù)產(chǎn)品對剪切的敏感性的不同,可分別選擇高剪切攪拌槳或者低剪切攪拌槳。
低剪切型渦輪槳– 適用于對剪切敏感的產(chǎn)品
生物制藥 -幾種特殊的無菌級(jí)發(fā)酵攪拌槳
發(fā)酵罐內(nèi)攪拌槳配置
某公司 120m3 土霉素發(fā)酵罐現(xiàn)狀
設(shè)備的直徑為3800mm,直邊高度為9300mm,上下為標(biāo)準(zhǔn)橢圓封頭,全容積約120m3,裝料體積約100m3。設(shè)備內(nèi)設(shè)置六組換熱管,垂直布置。
發(fā)酵罐的攪拌器采用四層六箭葉圓盤渦輪,槳葉直徑1250mm,配備的電機(jī)功率為280kW,10級(jí)電機(jī),采用皮帶減速,攪拌轉(zhuǎn)速分別為125rpm。
120m3 土霉素發(fā)酵罐存在的主要問題
1、能耗分配問題
由于發(fā)酵罐的氣體進(jìn)口位于發(fā)酵罐的底部,底部攪拌器(即第1個(gè)攪拌器)的氣體剪切分散能力顯得十分重要,攪拌的能量耗散應(yīng)主要集中在此攪拌器,其他位置攪拌器的主要功能是維持氣泡的分散狀態(tài)和釜內(nèi)的宏觀混合及傳熱,能耗相對較小。而本發(fā)酵罐上下均為相同直徑相同形狀的攪拌器,消耗了同等的攪拌功率,顯然本發(fā)酵罐各攪拌器的能耗分配是不合理的,上面幾層攪拌器的剪切作用近乎于浪費(fèi)。
2、槳型選擇問題
原發(fā)酵罐的攪拌器采用四層箭葉圓盤渦輪,為常規(guī)的氣體分散攪拌器。該攪拌器為徑流槳,比較適合低粘體系小氣量的攪拌,當(dāng)氣體流量增大時(shí),其葉片背面形成氣穴,表觀密度下降,攪拌器由于“打滑”而功率下降,氣體的分散能力削弱。右圖為實(shí)驗(yàn)室結(jié)果,當(dāng)氣量到達(dá)1VVM時(shí)(單位體積液體中每分鐘通過的氣體量),圖中6DT攪拌器(即六直葉圓盤渦輪)的功率下降近25%,同樣六彎葉、六箭葉等圓盤渦輪的特性也基本相似。本發(fā)酵罐的通氣量約為0.96VVM,攪拌器的氣體處理能力已明顯下降。所以本槳型不合理。
3、流型問題
當(dāng)發(fā)酵液粘度較低時(shí),其攪拌器的設(shè)計(jì)關(guān)鍵是氣體的分散,良好氣體的分散,可增加氣含率、減小氣泡直徑、提高容積傳質(zhì)系數(shù),從而提高空氣中氧氣的利用率,減小氣體的需求量,節(jié)約能耗。但當(dāng)發(fā)酵液粘度較高時(shí),發(fā)酵罐內(nèi)流體的宏觀混合問題就凸現(xiàn)出來,就有可能產(chǎn)生混合分區(qū),氣泡盡管得到了局部的分散,但在整個(gè)攪拌槽內(nèi)得不到均勻的分布。所以,宏觀混合的問題在中高粘度發(fā)酵中與氣體的分散同樣重要。
右圖中彩色箭頭表示的是物料的流動(dòng)方向。可以看出,現(xiàn)發(fā)酵罐內(nèi)采用的是四層徑流槳,流體從攪拌器沿徑向發(fā)散,再從攪拌器的上下吸入,每個(gè)攪拌器均產(chǎn)生一個(gè)獨(dú)立的流型,從而產(chǎn)生四個(gè)混合分區(qū),各混合分區(qū)之間的物質(zhì)與能量的交換受到了阻礙,宏觀混合比較差。
120m3 土霉素發(fā)酵罐改造方案
1、合理分配各攪拌器的能耗
改造后本發(fā)酵罐的攪拌功率約為165kW,其中55%分配給底層的氣體分散渦輪DT604,主要用于氣體的分散;其余45%分配給上三層軸流攪拌器SP403,主要用于維持氣泡的分散狀態(tài)和釜內(nèi)的宏觀混合及傳熱,形成均一的溫度場和濃度場,并有利于體系氣含率的提高。
六凹葉圓盤渦輪攪拌器
2、槳型選擇與流型改善
鑒于原發(fā)酵罐攪拌器存在的槳型和流型問題,我們認(rèn)為可進(jìn)行以下幾方面的改造:
上三層徑流槳改為SP403高效軸流槳,使整個(gè)攪拌槽內(nèi)成為一個(gè)混合區(qū)域,從而消除混合分區(qū)。此外,發(fā)酵罐內(nèi)每分鐘的循環(huán)次數(shù)約為5次,增強(qiáng)了氣泡的再循環(huán)能力,并可提高氣含率和氧氣的利用率。SP403為寬葉軸流槳,可以兼顧到氣液分散和宏觀混合兩個(gè)方面,這對于發(fā)酵工藝來說是至關(guān)重要的。SP403槳與傳統(tǒng)的六直葉圓盤渦輪相比,可提高傳質(zhì)30%;剪切率可降低75%,適用于對剪切敏感的發(fā)酵工藝;能耗可降低45%;能夠提高對剪切敏感的發(fā)酵工藝的得率;
底層六箭葉圓盤渦輪改為DT604六凹葉圓盤渦輪,可防止通氣后功率的下降,從而提高氣體的分散能力和大氣量的處理能力,并可減小對氣量的要求。DT604六凹葉圓盤渦輪徑向流槳,其葉片型式為最優(yōu)化設(shè)計(jì)的非對稱拋物面,與傳統(tǒng)的六半管葉片圓盤渦輪相比,不僅可以節(jié)能30%以上,而且還可以分散更多的氣體,并且不會(huì)產(chǎn)生大的壓降,通氣率對攪拌功率的下降影響較小。
攪拌器選擇:
120m3土霉素發(fā)酵罐攪拌器選型對比
攪拌機(jī)內(nèi)部情況 | 宏觀流場和溫度分布均勻性比較 |
1、氣體分散葉輪不同
索孚采用的氣體分散葉輪為六凹葉圓盤渦輪攪拌器,即DT604攪拌器,葉輪直徑為1250mm,葉片高度為250mm,凹面形狀為更符合氣穴行為的類拋物線曲面,采用專用模具壓制,通氣后功率變化很小,即功率對氣量變化不敏感,特別適合大氣量的分散。
DT604攪拌器氣含率高,氧利用率也高一些,估計(jì)還可能節(jié)約10%以上的通氣量,這是十分可觀的。
其它方案采用的氣體分散葉輪為六葉圓弧圓盤渦輪攪拌器,葉輪直徑為1250mm,葉片高度為120mm,凹面形狀為圓弧面,采用直徑為219mm的鋼管制造,通氣后功率變化相對較大,大氣量時(shí)攪拌器背面容易產(chǎn)生氣穴,導(dǎo)致“打滑”,氣體處理能力下降;
2、功率分配不同
六凹葉圓盤渦輪攪拌器 | CFD流場模擬圖 |
由于發(fā)酵罐的氣體進(jìn)口位于發(fā)酵罐的底部,底部攪拌器(即第1個(gè)攪拌器)的分散能力顯得十分重要,攪拌的能量消耗應(yīng)主要集中在此攪拌器,其他位置攪拌器的主要功能是維持氣泡的分散狀態(tài)和釜內(nèi)的宏觀混合及傳熱,能耗相對較小。
杭州索孚方案中的氣體分散葉輪功率占總能耗的55%左右,達(dá)90kW。
DT604的設(shè)計(jì)根據(jù)實(shí)驗(yàn)結(jié)果還可以進(jìn)一步改進(jìn),如采用傾斜的DT604,具有一定的軸流能力,增加底部物料混合效果,也可適當(dāng)再減小功率。此外,氣體分布管的位置也很重要,一般位于2/3槳葉直徑處。
其它方案中的氣體分散葉輪功率占總能耗的45%左右,僅為73kW,氣體分散能力明顯較低,攪拌器的能耗分配方案不合理。
3、發(fā)酵罐內(nèi)的流型不盡相同